If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-8y+6=0
a = 1; b = -8; c = +6;
Δ = b2-4ac
Δ = -82-4·1·6
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{10}}{2*1}=\frac{8-2\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{10}}{2*1}=\frac{8+2\sqrt{10}}{2} $
| 10-5n+10=45 | | 14x+7=3x+21 | | 8y-3=5y+12 | | x=-41+16 | | 2.5=5/3/y | | 2.5=1.66666666666666666666666666/y | | (21x+6)=(100) | | 3/y-3=12/y+3 | | -7x+18=-7-2 | | 2(c-3)^2-4=0 | | 8x-16=35x-15 | | 2x-4/5=7x3/4 | | 2*(30-y)+3.5y=90 | | x-5+7=12 | | 22x-12=11x-1 | | 2(x+1)-2(x+2)+3(x-5)=10 | | Y=-5x+1= | | 4x=7/64 | | 2e+7=11 | | 20x-15=x+5x | | 1/6x+1/3x=18 | | 8(4x-4)-1=14-8x | | 4x-2+2x-4=180 | | 3x^2=24x-24=0 | | 3x*(2x-1)=6-9x | | 3x*(2x-1)=6 | | 0.5(5-7x)=8-(4x= | | (2x)^-3/2x=0 | | 10=4+p/3 | | 8=r/3+3 | | 57=3z-3 | | 43=3+2m |